S. Binet, E. et al - Noir de carbone nanostructuré : vers une valeur limite d’exposition professionnelle.Grand angle. Réf Santé Trav. 2019 (www.rst-sante-travail.fr/).
Carbon black, titanium dioxide and talc. In : IARC monographs on the evaluation of carcinogenic risks to humans. 2010, vol. 93 (https://monographs.iarc.fr/).
Aérosols en fraction inhalable M-264. In : MétroPol. Métrologie des polluants. INRS, 2016 (www.inrs.fr/metropol/).
Aérosols en fraction inhalable M-274. In : MétroPol. Métrologie des polluants. INRS, 2016 (www.inrs.fr/metropol/).
Carbon Black. Method 5100. In : NIOSH Manual of Analytical Methods (NMAM), 5th edition. NIOSH, 2015 (www.cdc.gov/niosh/nmam).
Prélèvement des aérosols par cassette fermée. Guide méthodologique. In : MétroPol. Métrologie des polluants. INRS, 2015 (www.inrs.fr/metropol/).
Particules émises par des moteurs diesel M-341, In : MétroPol. Métrologie des polluants. INRS, 2016 (www.inrs.fr/metropol/).
Aérosols en fraction alvéolaire M-278. In : MétroPol. Métrologie des polluants. INRS, 2016 (www.inrs.fr/metropol/).
Prélèvement des aérosols par cyclone. Guide méthodologique. In : MétroPol. Métrologie des polluants. INRS, 2019 (www.inrs.fr/metropol/).
ICRP - Human Respiratory Tract Model for Radiological Protection. International Commission on Radiological Protection (ICRP Publication 66), Edinburgh, 1994.
Kreyling WG, M Semmler-Behnke, S Takenaka, Moller W - Differences in the biokinetics of inhaled nano- versus micrometer-sized particles. Acc Chem Res 2013; 46:714-22.
Morrow PE - Possible mechanisms to explain dust overloading of the lungs. Fund Appl Toxicol. 1988 ; 10 : 369-384.
Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 2010 Jan;113(1):226-42.
Pauluhn J. Poorly soluble particulates: searching for a unifying denominator of nanoparticles and fine particles for DNEL estimation. Toxicology 2011; 279: 176–188.
Levy L, Chaudhuri IS, Krueger N, McCunney RJ - Does Carbon Black Disaggregate in Lung Fluid? A critical assessment. Chem Res Toxicol. 2012 ; 25 : 2001-2006.
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W et al - Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol. 2009 ; 21 : 55-60.
Kermanizadeh A, Balharry B, Wallin H, Loft S et al. - Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol. 2015 ; 45 : 837–872.
Geiser M, Kreyling WG - Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 2010 ; 7:2.
Wiebert P, Sanchez-Crespo A, Falk R, Philipson K et al - No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol. 2006 ;18 :741-747.
DFG Report - Nanomaterials. Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, 2013, 95p.
Gallagher J, Sams R, Inmon J, Gelein R et al - Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in rat lung DNA following subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 2003 ; 190 : 224-231.
Gilmour PS, Ziesenis A, Morrison ER, Vickers MA et al - Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol. 2004 ; 195 : 35-44.
Chen S, Yin R, Mutze K, Yu Y et al. - No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol. 2016 ; 13 : 33.
Schmid O, Stoeger T. Surface area is the biologically most effective dose metric for acute nanoparticle toxicity in the lung. J Aerosol Sci. 2016; 99:133-143.
Carter JM, Corson N, Driscoll KE, Elder A et al. - A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med. 2006 ; 48 : 1265-78.
Lindner K et al. - Low dose carbon black nanoparticle exposure does not aggravate allergic airway inflammation in mice irrespective of the presence of surface polycyclic aromatic hydrocarbons. Nanomaterials (Basel) 2018 ; 8 : 1-18.
Elder A, Gelein R, Finkelstein JN, Driscoll KE et al - Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, Lung inflammation, and Histopathology. Toxicol. Sci. 2005; 88 : 614-629.
Driscoll KE, Carter JM, Howard BW, Hassenbein DG et al. - Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 1996 ; 136 : 372-380.
Nikula KJ, Snipes MB, Barr EB, Griffith WC et al - Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Fundam Appl Toxicol. 1995 ; 25 : 80-94.
Seaton A, MacNee W, Donaldson K, Godden D - Particulate air pollution and acute health effects. Lancet. 1995 ; 345 (8943) : 176-8.
Ganguly K, Ettehadieh D, Upadhyay S, Takenaka S et al - Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Part Fibre Toxicol. 2017 ; 14:19.
Christophersen DV, Jacobsen NR, Jensen DM, Kermadizadeh A et al. - Inflammation and vascular effects after repeated intratracheal instillations of carbon black and lipopolysaccharide. PLoS One. 2016 ; 11(8) : e0160731.
Modrzynska J, Berthing T, Ravn-Haren G. et al. - Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice. Part Fibre Toxicol. 2018 ; 15 : 2.
Ema M, Hougaard KS, Kishimoto A, Honda K - Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology. 2016 ; 10 : 391-412.
Skovmand A, Jacobsen Lauvås A, Christensen P, Vogel U et al - Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part Fibre Toxicol. 2018 ;15 :10.
Skovmand A, Jensen ACØ, Maurice C, Marchetti F et al - Effects of maternal inhalation of carbon black nanoparticles on reproductive and fertility parameters in a four-generation study of male mice. Part Fibre Toxicol. 2019 ; 16 :13.
Umezawa M, Onoda A, Korshunova I, Jensen ACØ, Koponen IK, Jensen KA, Khodosevich K, Vogel U, Hougaard KS. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part Fiber Toxicol. 2018;15:36.
Zhang R, Dai Y, Zhang X, Niu Y et al. - Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part Fibre Toxicol. 2014 ; 11 : 73.
Yang M, Li Y, Meng T, Zhang L et al. - Ultrafine CB-induced small airway obstruction in CB-exposed workers and mice. Sci Total Environ. 2019 ; 671 : 866-873.
Neghab M, Mohraz MH, Hassanzadeh J. Symptoms of respiratory disease and lung functional impairment associated with occupational inhalation exposure to carbon black dust. J Occup Health. 2011 ; 53(6) : 432-438.
Morfeld P, Mundt KA, Dell LD, Sorahan T et al. – Meta-analysis of cardiac mortality in three cohorts of carbon black production workers. Int J Environ Res Public Health. 2016 ; 13(3) : 302.
Dai Y, Niu Y, Duan H, Bassig BA et al. – Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. Environ Mol Mutagen. 2016 ; 57 : 615-622.
Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE et al. - Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol. 2004 ; 16(suppl. 1) : 59-72.
Frampton MW, Stewart JC, Oberdörster G, Morrow PE et al. – Inhalation of ultrafine particles alters blood leucocyte expression of adhesion molecules in humans. Environ Health Perspect. 2006 ; 114(1) : 51-58.
Zareba W, Couderc JP, Oberdörster G, Chalupa D et al. – ECG parameters and exposure to carbon ultrafine particles in young healthy subjects. Inhal Toxicol. 2009 ; 21(3) : 223-233.
Stewart JC, Chalupa DC, Delvin RB, Frasier LM et al. – Vascular effects of ultrafine particles in persons with type 2 diabetes. Environ Health Perspect. 2010 ; 118(12) : 1692-1698.
Ramanakumar AV, Parent ME, Latreille B, Siemiatycki J - Risk of lung cancer following exposure to carbon black, titanium dioxide and talc : results from two case-control studies in Montreal. Int J Cancer. 2008 ; 122 : 183-189.
Vora R, Zareba W, Utell MJ, Pietropaoli AP et al. – Inhalation of ultrafine carbon particles alters heart rate and heart rate variability in people with type 2 diabetes. Part Fibre Toxicol. 2014 ; 11 : 31.
Rota M, Bosetti C, Boccia S, Boffetta P et al. - Occupational exposures to polycyclic aromatic hydrocarbons and respiratory and urinary tract cancers : an updated systematic review and a meta-analysis to 2014. Arch Toxicol. 2014 ; 88 : 1479-1490.
Dell LD, Mundt KA, Luippold RS, Nunes AP et al. - A cohort mortality study of employees in the U.S. carbon black industry. J Occup Environ Med. 2006 ; 48 (12) : 1 219-1 229.
Dell LD, Gallagher AE, Crawford L, Jones RM et al. - Cohort study of carbon black exposure and risk of malignant and nonmalignant respiratory disease mortality in the US carbon black industry. J Occup Environ Med. 2015 ; 57(9) : 984-997.
Yong M, Anderle L, Levy L, McCunney RJ. Carbon black and lung cancer mortality – A meta-regression analysis based on three occupational cohort studies. J Occup Environ Med. 2019 ; 61(11) : 949-954.
Ling M, Chio C, Chou W, Chen W et al. - Assessing the potential exposure risk and control for airborne titanium dioxide and carbon black nanoparticles in the workplace, Envir Sci Pollut Res. 2011; 18 : 877-889.
Cesard V, Belut E, Prevost C, Taniere A et al. - Assessing the containment efficiency of a microbiological safety cabinet during the simultaneous generation of a nanoaerosol and a tracer gas. Ann Occup Hyg 2013; 57 (3): 345-359.
Guide pratique de ventilation 17 : Emploi de matériaux pulvérulents. INRS, ED 767 (https://www.inrs.fr/).
Lee JH, Kwon M, Ji JH, Kang CS, Ahn KH et al. - Exposure assessment of workplaces manufacturing nanosized TiO2 and silver. Inhal Toxicol. 2011; 23: 226-236.
Heitbrink WA, Lo LM, Dunn KH - Exposure controls for nanomaterials at three manufacturing sites. J Occup Environ Hyg. 2015; 12:1, 16-28.
Old L, Methner MM. Engineering Case Reports: Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg. 2008 ; 5 : D63-D69.
Ricaud M, Chazelet S, Belut E, Bemer D et al. Nanomatériaux – Ventilation et filtration de l’air des lieux de travail, INRS 2014 ; ED 6181, Paris.