

Ethylène-acétate de vinyle EVA

Présentation du polymère

Les copolymères d'éthylène et d'acétate de vinyle sont utilisés purs ou en mélange avec les matières thermoplastiques ou des hydrocarbures paraffiniques. Ils servent notamment à la préparation de colles du type "Hot-Melt".

Numéro CAS _______ 24937-78-8

Famille du polymère ______ Polyoléfine

Synonymes _____ ■ E/VA ___ PEVA

Synthèse

Formule développée n°1

$$\left(H_{2}C \xrightarrow{\qquad} CH_{2} \right)_{X} + \left(\begin{array}{c} CH_{2} & CH_{2} \\ H_{2}C & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{2} \\ CH_{2} & CH_{2} \end{array} \right)_{X} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{2} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y} + \left(\begin{array}{c} CH_{3} & CH_{3} \\ CH_{3} & CH_{3} \end{array} \right)_{y}$$

Poly(éthylène/acétate de vinyle)

Caractéristiques

Solubilité

Insoluble dans l'eau, les alcools et dans les solvants à température ambiante.

Additifs

Classe de l'additif	Nom de l'additif
Charges	Noir de carbone
Charges	Silice
Charges	Silicates
Charges	Fibres de verre
Charges	Carbonate de calcium
Colorants	Pigments organiques
Colorants	Pigments minéraux
Colorants	Sels de cadmium
Colorants	Sels de cobalt
Retardateur de flamme	Composé à base de bore

<u>www.inrs.fr/plastiques</u> Ethylène-acétate de vinyle Page 1 / 4

Plastiques, Risque et Analyse ThermlQue

Retardateur de flamme	Composé phosphoré
Retardateur de flamme	Oxyde d'antimoine
Retardateur de flamme	Paraffines chlorées
Retardateur de flamme	Composé à base d'aluminium
Divers	Phénol (anti-oxidant)
Divers	Amine (anti-oxydant)
Divers	Benzophénone (stabilisants UV)
Divers	Réticulants

Mise en oeuvre

Le copolymère de l'éthylène et de l'acétate de vinyle est utilisé pur ou en mélange avec des matières thermoplastiques ou des hydrocarbures paraffiniques. Il sert notamment à la préparation de colles du type « Hot-Melt ». Il est également utilisé comme couche adhésive entre un polyéthylène et un polyamide dans la fabrication de multicouches PE/PA pour l'agroalimentaire.

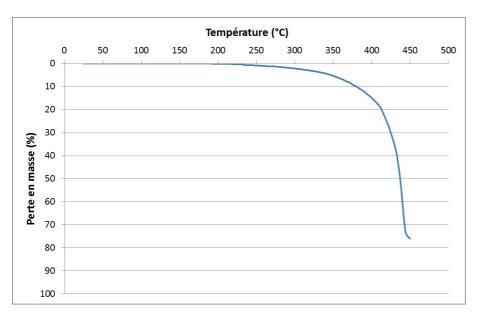
Procédé	Gamme de température (°C)	Informations complémentaires
Extrusion	190 à 220	Les extrusions par soufflage qui permettent l'obtention de corps creux se font à 200°C. Ce procédé permet de réaliser les réservoirs à carburant pour l'automobile par exemple.
Injection	170 à 250	La température d'utilisation dépend de la densité de la matière.
Frittage	250	Le frittage est utilisé pour revêtir l'intérieur ou l'extérieur de tuyaux.
Enduction	280 à 320	Ce procédé est surtout utilisé avec du polyéthylène basse densité sur les supports lisses.
Projection		Procédé utilisé pour le revêtement. Revêtement au chalumeau par injection de poudre plastique dans la flamme et projection sur des objets froids. Revêtement par fluidification dans un nuage de poudre de plastique sous forme de lit fluidisé. Revêtement par projection avec pistolet à charges électrostatiques.
Soudage		Soudage au chalumeau à l'aide d'un gaz chaud (air ou azote) pour les pièces de chaudronnerie ou par application d'éléments chauds pour les films. Les ultra-sons sont aussi utilisés.

Risques

Risques chimiques

[1-5]

Dégradation thermique : résultats expérimentaux


Protocole de dégradation thermique ¹

 $^1 http://www.inrs.fr/dms/plastiques/DocumentCompagnonPlastiques/PLASTIQUES_DocCompagnon_6-1/Protocole%20DgtTh%20avril%202019.pdf$

Thermogramme

<u>www.inrs.fr/plastiques</u> Ethylène-acétate de vinyle Page 2 / 4

Le polymère se dégrade à partir de 260 °C.

A 450 °C, il est dégradé à 75 %.

Tableau des produits de dégradation thermique

Famille	250 ℃	300 ℃	450 <i>°</i> C	Lien Fiche Toxicologique	Lien Méthode METROPOL
Aldéhydes	Acétaldéhyde	Acétaldéhyde	Formaldéhyde(0,3%), Acétaldéhyde(0,15%)	FT-120 FT-7	M-66 M-4
Aldéhydes aromatiques	Benzaldéhyde, phenylpropenal	Benzaldéhyde	Benzaldéhyde (1,5%)		
Alcools aromatiques			Phénol	FT-15	M-182
Cétones	Acétophénone, Acétone		Acétophénone	FT-3	M-37, M- 192
Acides		Acide éthanoïque	Acide éthanoïque	FT-24	M-321, M- 300, M- 288, M- 294, M423
Hydrocarbures aromatiques	Benzène, Ethylbenzène, Styrène, Xylène, Chlorobenzène	Ethylbenzène, Styrène, Xylène, alpha-méthylstyrène	Benzène (traces),Toluène (1%), Ethylbenzène (< 1%), Styrène (15%), Xylène (1%), alpha.méthylstyrène, chlorobenzène	FT-49 FT-74 FT-266 FT-2 FT-77 FT-23	M-243, M- 237, M-40 M-240, M- 256, M-41 M-238, M- 265 M-266, M- 239 M-284, M- 241 M-188 M-33
Hydrocarbures aromatiques polycycliques	Phenanthrène		Naphtalène	FT-204	

Risques en cas d'incendie / explosion

[1,2]

Combustible _____ ou

Plastiques, Risque et Analyse ThermlQue

Pouvoir calorifique (Kcal/Kg)	11000
-------------------------------	-------

Descripitf:

L'EVA brûle assez facilement en dégageant essentiellement de l'anhydride carbonique, de l'oxyde de carbone toxique, des hydrocarbures aliphatiques et de l'acide acétique.

Risques asssociés aux additifs

9 additifs:

Noir de carbone :

Le noir de carbone pénètre dans l'organisme essentiellement par inhalation mais aussi par voies orale et cutanée. Après inhalation, il s'accumule dans le tractus respiratoire et s'élimine lentement par voie digestive.

FT-264

Silice:

La silice amorphe n'a pas d'effet spécifique sur la santé. En revanche la silice cristalline peut provoquer la silicose et joue également un rôle certain dans le développement de cancers pulmonaires.

Fibres de verre :

Danger d'irritation de la peau et des voies respiratoires, notamment au moment de leur incorporation dans les résines.

Pigments minéraux :

Les pigments minéraux ont en général la même toxicité que le métal qu'ils contiennent. L'anhydride chromique peut-être à l'origine d'ulcérations de la peau et des muqueuses.

FT-1

Composé phosphoré:

Nocifs et irritants pour la peau et les muqueuses.

Oxyde d'antimoine :

Le trioxyde de diantimoine est principalement absorbé par voie pulmonaire et, très faiblement, par voie digestive. Il est largement distribué dans l'organisme puis lentement éliminé, essentiellement dans les selles et plus faiblement dans l'urine. Chez l'homme, il existe un passage transplacentaire et dans le lait maternel.

FT-198

Phénol (anti-oxidant):

Le phénol est absorbé chez l'homme par voies orale, cutanée et inhalatoire.

FT-15

Sels de cobalt :

L'exposition chronique au cobalt en milieu professionnel peut être à l'origine de pathologies respiratoires (asthme, altérations fonctionnelles respiratoires, maladie des métaux durs) et cutanées (dermatite de contact allergique).

FT-128

Benzophénone (stabilisants UV) :

Légèrement irritante

Bibliographie générale

- 1 | HILADO CJ. Flammability handbook for plactics. Westport (CO), Technomic Publishing Compagny, 1982. 191 p.
- 2 | VOVELLE C, DELFAU JL. Combustion des plastiques. Techniques de l'Ingénieur, AM3170, 2007. 25 p.
- 3 | MERCIER J-P, MARECHAL E. Chimie des polymères. Synthèse, réactions, dégradations. Presses polytechniques et universitaires romandes, 1996. 466 p.
- 4 | LAFOND D, GARNIER R. Toxicité des produits de dégradation thermique des matières plastiques. Encyclopédie médico-chirurgicale. Toxicologie, pathologie professionnelle 16-541-C-10 Elsevier Masson, 2008 12p.
- 5 | MARCILLA A, BELTRAN MI, NAVARRO R. Evolution of products during the degradation of polyethylene in a batch reactor. Journal of Analytical and Applied Pyrolysis. 2009, vol. 86, n° 1, pp. 14-21 14-21.