

Polyétherimide PEI

Présentation du polymère

Les polyétherimides sont des thermoplastiques amorphes. Ils sont obtenus par polycondensation entre le dianhydride du bisphénol A et une diamine comme la mphénylène diamine. Les fonctions éthers apportent de la flexibilité au polymère et permettent une mise en oeuvre à chaud contrairement aux polyimides classiques. Les fonctions imides permettent de conserver la bonne résistance en température et mécanique des polyimides. Ces polymères possèdent également de bonnes propriétés électriques ainsi qu'une bonne résistance aux UV et au feu.

Familla du nalumàva	Numéro CAS	61128-46-9
rannie du polymere Polymue	Famille du polymère	Polyimide

Synthèse

Formule développée n°1

$$CH_3$$
 CH_3
 CH_3
 CH_3

Polyétherimide poly(bisphénol A-co-4-anhydride nitrophtalique-co-1,3-phénylènediamine)

Caractéristiques

Propriétés physico-chimiques

Température de transition vitreuse (°C) _______ 215

Solubilité

Ils sont solubles dans les solvants chlorés, les hydrocarbures aromatiques, les cétones et les aldéhydes.

Additifs

Classe de l'additif	Nom de l'additif
Charges	Fibres de verre
Charges	Fibres de carbone

Mise en oeuvre

Utilisation des polymères

Les applications des PEI sont en pleine croissance. Ils remplacent les métaux pour des pièces techniques ou fonctionnelles. Ils se retrouvent dans le domaine de l'automobile (composants de transmission, engrenages, pompes, feux, roulements, tubes), dans le domaine de l'électrique/électronique (interrupteurs, connecteurs, circuits imprimés, puces, fours à micro-ondes), dans le domaine médical... Ils sont aussi utilisés comme matière première pour la fabrication additive, principalement par extrusion de fil fondu.

www.inrs.fr/plastiques Polyétherimide Page 1/3

Plastiques, Risque et Analyse ThermlQue

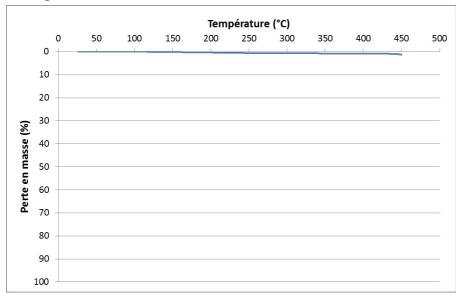
Procédés mis en oeuvre

Un séchage préalable du PEI avant transformation est nécessaire à 140°C.

Procédé	Gamme de température (°C)	Informations complémentaires
Injection-moulage	370-400	Température du moule 65-180°C
Extrusion	370-400	
Thermoformage	370-400	
Compression moulage	370-400	
Collage		Le collage des pièces en PEI se fait par ultrasons, par solvant ou par un autre adhésif.
Fabrication additive	370	Principalement par extrusion de fil fondu. Le plateau d'impression doit être chauffé à 230°C.

Risques chimiques

Risques spécifiques liés au polymère


La manipulation et la mise en oeuvre des résines et des polymères de PEI peuvent comporter des risques. Il est possible qu'ils contiennent des petites quantités d'amines aromatiques servant à leur préparation. Certaines de ces amines peuvent, à l'état pur, être responsables d'irritations cutanées, de perturbations sanguines et de cancers.

Dégradation thermique : résultats expérimentaux

Protocole de dégradation thermique ¹

1 https://www.inrs.fr/dms/plastiques/DocumentCompagnonPlastiques/PLASTIQUES_DocCompagnon_6-1/Protocole%20DgtTh%20avril%202019.pdf

Thermogramme

Le polymère se dégrade à partir de 445 °C.

A 450 °C, il est dégradé à 1 %.

Tableau des produits de dégradation thermique

Famille	210 ℃	440 ℃	450 °C	Lien Fiche Toxicologique	Lien Méthode METROPOL
Aldéhydes			Méthylpropanal, Méthylbutanal	FT-120	M-66
Cétones			Méthylisobutylcétone, Acétone	FT-56, FT-3	M-194, M-108, M-37, M-192

www.inrs.fr/plastiques Polyétherimide Page 2 / 3

Plastiques, Risque et Analyse ThermlQue

Hydrocarbures aromatiques		Dichlorobenzène, Chlorobenzène	Benzène (<0,1%), toluène (<0,1%), styrène (<0,1%)	FT-73, FT-224 FT-23, FT-49, FT-74,	M-14, M-33, M-240, M-41, M- 256, M-243, M-237, M- 40, M-239, M-266
Hydrocarbures insaturés			Méthylpropène		
composés halogénés	Dichlorobenzène	Dichlorobenzène, Chlorobenzène	Dichlorobenzène	FT-73 FT-224	M-14
Autres			Dihydrofurane		

Produits de dégradation décrits dans la bibliographie

Lors de la dégradation sont identifiés surtout le monoxyde de carbone (FT-47²), le dioxyde de carbone (FT-238³) et la vapeur d'eau.

R	isques	۵n	cas	d'in	condi	/ ۵	ovnl	osion
ĸ	isaues	en	CdS	a m	cenai	e /	exni	OSION

Combustible	oui

Le polyétherimide n'est pas incombustible mais il a une résistance naturelle au feu. Il dégage très peu de fumées et de produits lors de la combustion.

Risques asssociés aux additifs

Fibres de verre :

Descripitf:

Danger d'irritation de la peau et des voies respiratoires, notamment au moment de leur incorporation dans les résines.

Bibliographie générale

- 1 | GROUPE POLYALTO 2018 ⁴, fiche intitulée" PEI ULTEM (polyétherimide).
- ⁴https://www.polyalto.com/fr/catalogue/produits/pei-ultem-polyetherimide
- 2 | **GROUPE TRANSMATECH** ⁵, rubrique "matière stok", fiche intitulée "ULTEM-PEI".
- ⁵ https://www.matieres-techniques-plastiques.com/ultem_pei.html
- 3 | STRATASYS, *fiche de données de sécurité* ⁶, fiche pour l'ULTEM (PEI), 29 septembre 2014.
- 6 http://usglobalimages.stratasys.com/Main/Secure/MSDS/ULTEM_1010_Model/MSDS_ULTEM1010Model_FR.pdf?v=635494929469132844
- 4 | CARREGA M. Aide mémoire. Matières plastiques. Dunod 2 ed., 2009.247 p.
- 5 | TROTIGNON JP, VERDU J, DOBRACZYNSKI A, PIPERAUD M. Matières plastiques. Structures propriétés, mise en oeuvre, normalisation. Nathan 2 éd., 2006. 231 p.

Historique

Version	Date	Modification(s) faisant l'objet de la nouvelle version
Polyétherimide V-01	Décembre 2023	Création

www.inrs.fr/plastiques Polyétherimide Page 3 / 3

² http://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_47

 $^{^3\,}http://www.inrs.fr/publications/bdd/fichetox/fiche.html?refINRS=FICHETOX_238$